skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Ben-Tai, Nir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ben-Tai, Nir (Ed.)
    Abstract Peptide self‐assembly into amyloid fibrils provides numerous applications in drug delivery and biomedical engineering applications. We augment our previously‐established computational screening technique along with experimental biophysical characterization to discover 7‐mer peptides that self‐assemble into “parallelβ‐sheets”, that is,β‐sheets with N‐terminus‐to‐C‐terminus 𝛽‐strand vectors oriented in parallel. To accomplish the desiredβ‐strand organization, we applied thePepADamino acid sequence design software to the Class‐1 cross‐βspine defined by Sawaya et al. This molecular configuration includes two layers of parallelβ‐sheets stacked such that N‐terminus‐to‐C‐terminus vectors are oriented antiparallel for molecules on adjacentβ‐sheets. The first cohort ofPepADidentified peptides were examined for their fibrillation behavior in DMD/PRIME20 simulations, and the top performing sequence was selected as a prototype for a subsequent round of sequence refinement. The two rounds of design resulted in a library of eight 7‐mer peptides. In DMD/PRIME20 simulations, five of these peptides spontaneously formed fibril‐like structures with a predominantly parallel 𝛽‐sheet arrangement, two formed fibril‐like structure with <50% in parallel 𝛽‐sheet arrangement and one remained a random coil. Among the eight candidate peptides produced by PepAD and DMD/PRIME20, five were synthesized and purified. All five assembled into amyloid fibrils composed of parallelβ‐sheets based on Fourier transform infrared spectroscopy, circular dichroism, electron microscopy, and thioflavin‐T fluorescence spectroscopy measurements. 
    more » « less